If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-11200X+160=0
a = 1; b = -11200; c = +160;
Δ = b2-4ac
Δ = -112002-4·1·160
Δ = 125439360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{125439360}=\sqrt{64*1959990}=\sqrt{64}*\sqrt{1959990}=8\sqrt{1959990}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11200)-8\sqrt{1959990}}{2*1}=\frac{11200-8\sqrt{1959990}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11200)+8\sqrt{1959990}}{2*1}=\frac{11200+8\sqrt{1959990}}{2} $
| 4x-173=13x+151 | | 5x-6=20-8x | | 65=8+3c | | 0.08a+0.1(100-a)=8.4 | | c+27/8=9 | | 8x+-20=6 | | 2g-35=23 | | 4(3t-2)-(5t+1)=-21-(3t-2) | | -80+12x=118+x | | 7(f+4=77 | | 43=8s-5 | | 2(x+2)-(3x+3)=5(2x+2)-20 | | -4x2+6x-25=0 | | 8(b-81)=80 | | 6x=(5-2x)×(-4) | | -2(x-5)+4(x+3)=30 | | -92-7x=52-15x | | -12-2(2t-4)=0 | | 8(w-85)=32 | | 3=b/6-1 | | g-62/9=4 | | 4(s+14)=72 | | X2+28x+53=0 | | -40+12x=118+x | | e/2=1 | | 21x-42x-9x-12=28x-189-63 | | n=12=4 | | 4(k-73)=88 | | 2(3x-5)+7(8x-12)=9 | | X=1.8f+32 | | 21x-42x-9x-12=28x+189-63 | | 5x2+2x+5=0 |